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ABSTRACT. This paper presents an inequality for closed Riemannian manifolds involving
the volume entropy and the set of lengths of any family of homotopically independent
geodesic loops based at the same point. This inequality implies a curvature free collar
theorem, and is an analogous of the main theorem of [ACCS96] for variable curvature
Riemannian manifolds. Its proof is rather straightforward once we know the work by Lim
[Lim08] on volume entropy for graphs.

For a closed Riemannian manifold M we denote by M̃ its Riemannian universal cover.
The volume entropy (also known as asymptotic volume) of M is defined as the following
quantity:

hvol(M) := lim
R→∞

log volB(x̃, R)

R
.

Here B(x̃, R) denotes the metric ball of radius R around some point x̃ in M̃ and vol the
Riemannian volume. This limit always exists and does not depend on the chosen point
x̃ (see [Man79]). This asymptotic invariant describes the exponential growth rate of the
volume of balls in the universal cover and highly depends on how the fundamental group
and the geometry of the manifold interplay. Indeed the volume entropy can also be defined
as the exponential growth rate of the number of homotopy classes with bounded length
thanks to the classical identity:

(1) hvol(M) = lim
R→∞

log #{γ ∈ π1M | d(x̃, γ · x̃) 6 R}
R

.

Note that for an element γ ∈ π1M the distance d(x̃, γ · x̃) coincides with the length `(c) of
a shortest geodesic loop c in the class γ and based at x (the projection of x̃ on M by the
covering map). In view of this equality it seems reasonable to look for explicit relations

1991 Mathematics Subject Classification. 53C23.
The first author acknowledges support by the Ramón y Cajal grant RYC-2016-19334 and the

FEDER/MICINN grant PGC2018-095998-B-I00. The second author was partially supported by UL IRP grant
NeoGeo and FNR grants INTER/ANR/15/11211745 and OPEN/16/11405402 and also acknowledges support
from U.S. National Science Foundation grants DMS-1107452, 1107263, 1107367 “RNMS: GEometric
structures And Representation varieties” (the GEAR Network).

1



2 FLORENT BALACHEFF AND LOUIS MERLIN

between hvol(M) and the length of some subfamily of these geodesic loops. That was
the starting point of our investigation. Remember that n loops are said homotopically
independent if their homotopy classes generate a free subgroup of rank n. Here is our
result.

Theorem 1. Let M be a closed Riemannian manifold, x ∈ M and n > 2. Assume that
there exists a family c1, . . . , cn of homotopically independent loops based at x.

Then the following inequality holds true:
n∑

k=1

1

1 + e`(ck)·hvol(M)
6

1

2
.

This inequality has some similarity with the Anderson-Canary-Culler-Shalen inequality
[ACCS96, main theorem] which states that, if Γ is a purely loxodromic, topologically tame
and discrete subgroup of PSL2(C), freely generated by c1, · · · , cn ∈ π1(H3/Γ, x), then

n∑
k=1

1

1 + e`(ck)
6

1

2
.

Theorem 1 applies in particular for free subgroups of a fundamental group of a hyperbolic
3-manifold (such as Schottky groups) and we recover the above inequality in this particular
case, although with a worst constant, since the volume entropy of a hyperbolic 3-manifold
equals 2.

Nevertheless, Theorem 1 is optimal in the general setting of arbitrary Riemannian metrics
in the sense that, for any n > 2, there exists a sequence of Riemannian metrics {gi}i∈N on
the connected sum X of n copies of S1#S2, a point x on X and a family of homotopically
independent loops c1, . . . , cn based at x such that

lim
i→∞

n∑
k=1

1

1 + e`gi (ck)·hvol(X,gi)
=

1

2
.

See Remark 5 for more details.

As a consequence of our theorem we directly get the following.

Corollary 2. Fix h > 0. Let M be a closed Riemannian manifold with volume entropy h.
Suppose that c1 and c2 are two homotopically independent loops based at x.

Then

`(c2) >
1

h
log

(
4

h`(c1)

)
+ o(1)

for `(c1) sufficiently close to 0.
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So if the volume entropy is keeped fixed while the shortest length shrinks to zero, then
the length of the largest loop blows up and we control the rate of explosion. It partially
recovers (albeit with a worst multiplicative constant) and also generalizes to free curvature
metrics the classical consequence of the collar theorem [Bus92, Corollary 4.1.2] that given
a closed hyperbolic surface S and two simple closed geodesics c1 and c2 intersecting each
other, then the following sharp inequality is satisfied:

sinh

(
`(c1)

2

)
sinh

(
`(c2)

2

)
> 1.

Indeed this inequality admits the following expansion

`(c2) > 2 log

(
4

`(c1)

)
+ o(1)

for `(c1)→ 0 while hvol(S) = 1.
After showing Corollary 2, we discovered that a curvature free analog of collar theorem

was already shown in [BCGS17, Lemma 7.12] where they obtain that

`(c2) >
1

h
log

(
1

h`(c1)

)
under the same assumptions. Our corollary slightly improves their result for small values
of `(c1), but most importantly Theorem 1 relates it to a more general inequality. Compare
also with [Cer14, Theorem 1.2].

For largest families of homotopically independent loops we can also bound from below
the length of the largest one in terms of the previous ones.

Corollary 3. Fix h > 0 and n > 3. Let M be a closed Riemannian manifold with volume
entropy h. Suppose that c1, . . . , cn are n homotopically independent loops based at x and
ordered by increasing length: `(c1) 6 . . . 6 `(cn).

Then

`(cn) >
−1

h
log

(
h`(c1)

4
−

n−1∑
k=2

e−h`(ck)

)
+ o(1)

for `(c1) sufficiently close to 0.

To illustrate which information provides this inequality, observe that if the second length
is ε-closed to the lower bound in Corollary 2, then the third length blows up at a speed at
least − log ε/h.

We now prove Theorem 1.
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Let M be a closed Riemannian manifold, x ∈M and n > 2. Assume that c1, . . . , cn is
a family of homotopically independent loops based at x. We denote by ai := `(ci) their
respective lengths and suppose that they are ordered as follows: a1 6 . . . 6 an.

On the universal cover M̃ fix a lifted point x̃ of x and consider the metric graph G̃
defined as follows. The vertices of G̃ are in one-to-one correspondence with points
{γ · x̃ | γ ∈ 〈c1, . . . , cn〉 ' Fn ⊂ π1M}, and two vertices ỹ and z̃ are connected through
an edge of length ai if and only if z̃ = c±1i · ỹ. This graph is an infinite tree of valence 2n
and is the universal cover of the metric graph denoted by Ga1,...,an defined as the wedge
product of n circles of respective lengths a1, . . . , an. It is easy to check that

#{ṽ ∈ V (G̃) | dG̃(x̃, ṽ) 6 R} ≤ #{γ · x̃ | d(x̃, γ · x̃) 6 R}.

Equality (1) thus implies that

hvol(M) > hvol(Ga1,...,an).

Then the announced inequality
n∑

i=1

1

1 + eai·hvol(M)
6

1

2

is a straightforward consequence of the following result for graphs.

Lemma 4. The volume entropy h := hvol(Ga1,...,an) satisfies the following equality:
n∑

i=1

1

1 + ehai
=

1

2
.

Proof. According to [Lim08, Theorem 4] we know that h is the only positive real number
such that the following linear system of equations with unkowns xi

x1 = x1e
−ha1 + 2x2e

−ha2 + . . .+ 2xne
−han

x2 = 2x1e
−ha1 + x2e

−ha2 + . . .+ 2xne
−han

...
xn = 2x1e

−ha1 + 2x2e
−ha2 + . . .+ xne

−han

has a solution with xi > 0 for i = 1, . . . , n. So take such a solution (x1, . . . , xn) ∈ (R∗+)n.
By summing all the equations we see that

n∑
i=1

xi =
n∑

i=1

(2n− 1)e−haixi,

and by substracting any two different lines (Li) and (Lj) we get that

(1 + e−hai)xi = (1 + e−haj)xj.
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So
n∑

i=1

1− (2n− 1)e−hai

1 + e−hai
= 0

which is equivalent to the inequality
n∑

i=1

1

1 + ehai
=

1

2
.

�

Remark 5. This result is optimal in the sense that, for any n > 2, there exists a sequence
of Riemannian metrics {gi}i∈N on the connected sum X of n copies of S1 × S2, a point x
on X and a family of homotopically independent loops c1, . . . , cn based at x such that

lim
i→∞

n∑
k=1

1

1 + e`gi (ck)·hvol(X,gi)
=

1

2
.

The construction of the sequence of metrics {gi}i∈N can be easily obtained by slightly
modifying the simplicial Riemannian metric defined on the wedge product of n copies
of S1 × S2 as follows. For k = 1, . . . , n consider on each copy (S1 × S2)k the metric
product a2kdt ⊗ ds where dt denotes the standard Riemannian metric on S1 of length 1
and ds the standard Riemannian metric on S2 of area 4π. Then the simplicial Riemannian
metric g it induces on the wedge product ∨nk=1(S

1 × S2)k has the following property. If x
denotes the common point to all factors, any minimal (in its homotopical class) geodesic
loop γ based at x decomposes as a unique concatenation α1 ? . . . ? αN where each αj is
a minimal geodesic loop in some factor (S1 × S2)kj and whose class is the pj-iterated
for some pj ∈ Z \ {0} of a generator of the corresponding fundamental group. It is thus
straighforward to see that `(γ) =

∑N
j=1 |pj| · akj from which we deduce that the volume

entropy of (∨nk=1(S
1 × S2)k, g) is equal to the volume entropy of Ga1,...,an . Now observe

that we can choose for each k = 1, . . . , n as ck the unique minimal geodesic loop based
at x and contained in (S1 × S2)k that corresponds to one of the two generators of the
fundamental group of this factor. In particular

n∑
k=1

1

1 + e`g(ck)·hvol(∨nk=1(S
1×S2)k,g)

=
1

2
.

Finally we construct the sequence of metrics gi to smooth out the base point x. Indeed
we see the metric g as a singular metric on the connected sum #n

k=1(S
1 × S2)k and we

approximate g in the C0-topology by smooth Riemannian metrics. The conclusion follows
as both length and volume entropy are continuous maps for this topology.
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