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Abstract

Let M be a quotient of H2×· · ·×H2 (product of hyperbolic planes) by a uniform
lattice of (PSL2(R))

n
. We prove that, among metrics of M of prescribed volume,

the sum of hyperbolic metrics has minimal volume entropy.

1 Introduction

Let (X, g) be a compact Riemannian n-manifold and X̃ be the universal Riemannian
cover of X. The volume entropy is defined as

h(g) = lim
R→∞

1

R
log(Vol(B(x,R)))

where B(x,R) is the ball of radius R in X̃ centered at any point x ∈ X̃. The limit exists
and is independent of the choice of x (see [Man79] p.568).

In this paper, we are interested in the following problem.

Question 1. Let M be a compact locally symmetric space of noncompact type with locally
symmetric metric g0. Let g be any other metric on M such that Vol(M, g0) = Vol(M, g).
Do we have

h(g) > h(g0)?

M. Gromov was the first to conjecture such a result in [Gro83]. He was only in-
terested in the real hyperbolic case. But the question still makes sense for a general
symmetric space of noncompact type.

In the case where M̃ is reducible, there exist a unique locally symmetric metric of
minimal entropy among locally symmetric metrics of prescribed volume, which are ob-
tained by scaling the metric in the factors ([CF03b] Chapter 2). This metric is called

∗AMS Codes : 37B40 51M25 52C07 53C35 53C38 Keywords : Product of hyperbolic planes,
Lattices, Volume Entropy, Volume.
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”the” locally symmetric metric and is denoted by g0.

In this work, we give a positive answer to Question 1 in the case of compact quotients
of products of n hyperbolic planes, that is M = Γ\

(
H2
)n

where Γ is a uniform lattice
in (PSL2(R))n. More precisely our main result is the following:

Theorem 2 (Main theorem). Assume that (M, g0) is a compact quotient of the product
of n hyperbolic planes. Then, for any other metric g on M ,

h2n(g) Vol(M, g) > h2n(g0) Vol(M, g0).

Let us remark that the above inequality is sharp and no assumption is made on the
metric g.

In the fundamental paper [BCG95], G. Besson, G. Courtois and S. Gallot dealt with
the case where M is a locally symmetric space of rank one (g0 is negatively curved) and
obtained a similar statement than the main theorem for such spaces. The same result
was obtained before (see [BCG91]) in any rank but for a metric g in the conformal
class of the locally symmetric metric g0 (supposed to be irreducible). In the case where
dimM > 3, the method is based on the barycenter map and the inequality in theorem
2 appears as an inequality of calibration (to be described below). In the case where
dimM = 2, already proved by Katok (see [Kat88]), one can still ask if the inequality
can be seen as an inequality of calibration. Besson, Courtois and Gallot showed that it
is indeed true and gave another proof of the conjecture for hyperbolic surfaces.

The barycenter method was improved by Connell and Farb in [CF03b] and, working
factor by factor, they also gave a positive answer to Question 1 in the case where M is
locally a product of rank one symmetric spaces with no factor H2.

In both of those papers, the authors pointed out that the case of products of hyper-
bolic surfaces still remained unknown.

Note also that there is an answer to question 1 in the same setting as [CF03b] (prod-
ucts of rank 1 symmetric spaces without H2-factors) in [BCG07] using an interesting
different point of view. The inequality between volumes and entropies appears as a
corollary of a general work on representations of fundamental groups of compact mani-
folds into Lie groups of noncompact types.

We now describe the content of this paper. To prove our main result, we use the
general outline introduced in [BCG95]. It consists of an application of a method of
calibration. To make this method efficient, we embed the universal cover H2 × · · · ×H2

in the unit sphere of L2-functions on the Furstenberg boundary Tn = S1 × · · · × S1

by products of Poisson kernels. The aim is to show that this embedding has minimal
volume. In order to detect this minimality property, one may use a differential 2n-form
taking its extremal values over orthonormal frames in tangent frames of the embedding.
The method is briefly recalled in sections 2.1 and 2.2.

The hardest part is to find the calibrating form. Apart from the barycenter map,
which is not efficient in the 2-dimensional case, Besson, Courtois and Gallot developed
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an alternative idea. In Chapter 3 of [BCG91], following Gromov [Gro82], there is a
general process to build suitable differential forms using bounded cocycles. The choice
of the appropriate cocycle in H2 is then discussed in [BCG95] Chapter 6. We generalize
this approach for the compact quotients of

(
H2
)n

using the bounded 2n-cocycle on Tn
that M. Bucher exploits in [BK08] (for n = 2). We describe this bounded cocycle in
paragraph 3.1 and we check that the derived differential form has the required properties
afterwards. The calibrating inequality is finally obtained in paragraph 3.4.

The last section is devoted to applications. We obtain a (non optimal) estimate for
the minimal volume (to be defined in Section 4) of a compact quotient Γ\

(
H2
)n

.

Corollary 3. Let M = Γ\
(
H2
)n

be a compact quotient of
(
H2
)n

. Then

MinVol(M) >

( √
n

2n− 1

)2n

Vol(g0).

The most spectacular application is that we are able to give an optimal bound for
degrees of maps f : Y 2n → Γ\

(
H2
)n

from any Riemannian 2n-manifold. Precisely,

Corollary 4. Let Y be a smooth manifold of dimension 2n endowed with a Riemannian
metric g and let f be a continuous map

f : (Y, g) −→ (M, g0).

Then
h(g)2n Vol(Y, g) > |deg f |h(g0)2n Vol(M, g0).

We strongly believe that the equality is achieved if and only if f is homotopic to a
Riemannian covering map but our approach is not relevant to investigate the equality
case.

I would like to thank my PhD advisor C. Bavard for many useful discussions and
comments. I am also grateful to G. Besson for his encouragements and the remarks he
made on a preliminary version of this paper.

2 Calibration method

2.1 The spherical volume

In this section, M is a quotient of
(
H2
)n

by a uniform torsion-free lattice Γ = π1(M)

and then M̃ is the Riemannian product
(
H2
)n

with the usual metric of curvature −1

in each factors (called g0 in both of the manifolds M and M̃). Remark that g0 is the
best locally symmetric metric in the sense of [CF03b] Chapter 2, that is the metric with
minimal entropy among all locally symmetric metrics of same volume. As above, g is
any other metric on M .

Let us start with a few notations. We choose once and for all a basepoint o ∈ H2, for
instance o = 0 in the Poincaré disk model (sitting inside the complex plane). We will
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denote by the same letter o the basepoint in
(
H2
)n

. There will be no ambiguity resulting
from that convention. The basepoint is used to compute the Buseman functions and to
identify the boundary at infinity ∂∞H2 with the circle S1 (see below).

In what follows, ∂F (M̃) will denote the Furstenberg boundary of M̃ : the space of

Weyl chambers at infinity in M̃ emanating from the same point (see [Ebe96] or [GJT98]
for further discussions). There will be no conceptual difficulties coming from a general
theory of Furstenberg boundary: we just use the fact that ∂F (

(
H2
)n

) is identified to the
n-dimensional torus Tn =

(
S1
)n

, by the above choice of a basepoint. The Furstenberg
boundary is better adapted to the case of higher rank symmetric spaces and it is one
of the key points in [CF03b]. The Furstenberg boundary and the visual boundary are
the same in the rank one case and that’s why the distinction does not appear in [BCG95].

The Furstenberg boundary turns out to be a probability space in the following way.
The circle S1 = R/2πZ is endowed with the Lebesgue probability measure dθ (nor-
malized in such a way that dθ(S1) = 1). The n-torus is the product (in the sense of
probability spaces) of n such circles. The spaces of L2 functions on Tn is defined with
respect to this measure.

The Poisson kernel po of the disk is defined by:

po(x, θ) = e−Bo(x,θ),

where Bo(x, θ) is the Buseman function. A classical computation gives the explicit
expression in the Poincaré disk

po(x, θ) =
1− |x|2

|x− e2iπθ|2

for any x ∈ B(0, 1) and θ ∈ S1.

The definition of the spherical volume in [BCG95] extends to
(
H2
)n

in the following

way. We consider two representations of Γ. The first one in Isom(M̃, g0) is the holonomy

representation of Γ. The second one is the representation in the unit sphere of L2(∂F M̃),
the Hilbert space of L2-functions on the Furstenberg boundary with real values. We
denote this unit sphere by S∞ or S∞(∂F M̃) if the universal cover needs to be specified.
More precisely, it is a unitary representation restricted to S∞. It is defined by

(γf)(θ) = f(γ−1(θ))
√
p0(γo1, θ1) · · ·

√
p0(γon, θn)

where o is the basepoint of
(
H2
)n

, γo = (γo1, · · · , γon) ∈
(
H2
)n

and θ = (θ1, · · · , θn) ∈
Tn. This is the change of variables formula (for L2 functions). Indeed the Jacobian
of an isometry acting on the Furstenberg boundary is given by the product of Poisson
kernels.

Then, as in [BCG95], we introduce the family N of Lipschitz immersions

Φ : M̃ −→ L2(∂F M̃)
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which are Γ-equivariant, that is satisfying the following equation

Φ(γx) = γΦ(x)

for all γ ∈ Γ and all x ∈ M̃ . We also require that

∀x ∈
(
H2
)n
, ‖Φ(x)‖L2 = 1,

that is Φ(x) ∈ S∞ and that, for every x ∈ M̃ , Φ(x) is positive almost everywhere. We
can also consider those immersions as functions of two variables Φ : (x, θ) 7→ Φ(x)(θ).
The product of square roots of Poisson kernels

Φ0 :=
(
H2
)n −→ S∞

(x1, · · · , xn) 7−→
√
po(x1, ·)× · · · ×

√
po(xn, ·)

is an example of such an immersion (see Lemma 6 below). Moreover it is an embedding.
We will think of

(
H2
)n

as embedded in S∞ by the product of Poisson kernels. The
spherical volume is then defined by

SphereVol(M) = inf
Φ∈N
{Vol(Φ)}

where

Vol(Φ) =

∫
M

√
|det g0(gΦ(x))|dvg0(x),

where gΦ denotes the almost everywhere defined pull-back of the usual Hilbertian metric
on L2 by the Lipschitz immersion Φ and detg(gΦ) is computed in any g-orthonormal
basis. The integral on M means that we integrate on a fundamental domain in

(
H2
)n

for the Γ-action and the equivariance relation satisfied by Φ shows that this does not
depend on the fundamental domain.

The spherical volume is a transitional object. We use it to make a link between
entropies and volumes. We want to prove the following inequalities.(

h(g0)2

8n

)n
Vol(M, g0) = SphereVol(M) 6

(
h(g)2

8n

)n
Vol(M, g).

First we recall the second inequality.

Proposition 5 ([BCG95] Chapter 3). We have

SphereVol(M) 6

(
h(g)2

8n

)n
Vol(M, g).

Proof: We refer to Chapter 3 of [BCG95] for the same proof in the rank one case.
There are only very few modifications to make in our setting. Let’s first reintroduce a
family of immersions which satisfy the conditions above. For a real parameter c > h(g),
we consider :

Ψc(x, θ) =

(∫
M̃
e−cd(x,y)p0(y1, θ1) · · · p0(yn, θn)dvg(y)

)1/2

.
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The condition on c ensures that the integral converges. Indeed for uniform lattices
volume entropy and critical exponent are the same. Then we define an element of N by

Φc(x, θ) =
Ψc(x, θ)(∫

Tn Ψ2
c(x, θ)dθ

)1/2 .
We just have replaced the boundary sphere by the Furstenberg boundary. We can now
perform the very same computation as [BCG95] (p.742 for a proof of the Lipschitz
regularity and p.746 for the volume computation). We get the required estimate for the
spherical volume.

It remains to check now that if M is a compact quotient of
(
H2
)n

, we have

SphereVol(M) =

(
h(g0)2

8n

)n
Vol(M, g0).

In fact, we can find an immersion Φ0 of N which has precisely the needed volume.

Lemma 6. Let M be a compact quotient of
(
H2
)n

. Let Φ0 :
(
H2
)n → L2(Tn) be defined

by

Φ0(x1, · · · , xn, θ1, · · · , θn) =
n∏
i=1

√√√√ 1− |xi|2∣∣xi − e2iπθi
∣∣2 .

Then

1. Φ0 is a smooth embedding, it belongs to N and

Vol(Φ0) =

(
h(g0)2

8n

)n
Vol(g0) =

(
1

8

)n
Vol(g0).

2. The tangent space at the basepoint 1 ∈ S∞ of the image of Φ0, T1Φ0(
(
H2
)n

) is
generated by the 2n functions

fi : Tn −→ R
θ = (θ1, · · · , θn) 7−→

√
2 cos θi

and
fi+1 : Tn −→ R

θ = (θ1, · · · , θn) 7−→
√

2 sin θi
,

for i = 1, · · · , n.

Proof: It is enough to handle the same situation with only one factor H2, the volume
and the description of the tangent space will be easily deduced from the 2-dimensional
case. The family of measures (νz)z∈H2 on S1 which are in the Lebesgue class and satisfy

dνz
dθ

=
1− |z|2

|z − e2iπθ|2
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are in fact the so-called Patterson-Sullivan measures of the hyperbolic plane which were
constructed in [Pat76]. We refer to this original paper for the equivariance relation (note
that this family of measures is even SL2(R)-equivariant).

Then it is enough to show that Φ0 is an immersion at the basepoint o, SL2(R) acting
(transitively on H2) by diffeomorphisms. The differential of Φ0 is easy to compute and
we get the basis we claimed for the tangent.

This shows in particular the point 2 of the above Lemma which shall be used later
on. As the 2 functions cos and sin are a free family in L2(S1), we obtain that Φ0 is an
immersion at o.

Finally the volume of Φ0 has been computed in [BCG95] at page 744.

This Lemma 6 shows in particular that

SphereVol(M) 6

(
h(g0)2

8n

)n
Vol(M, g0).

The purpose of Section 3 is to prove that this inequality is sharp, providing the required
equality.

2.2 Calibration theory

In order to show that the Spherical Volume is achieved by the map Φ0, we use a classical
method of calibration, following [BCG95] chapter 4. Let us make a brief review on how
we implement this method.

Let Ω be a differential 2n-form which is Γ-invariant.

Definition 7. 1. The comass of Ω is the quantity

comass(Ω) = sup |Ωϕ(f1, · · · , f2n)| ,

where the supremum is taken over all functions ϕ ∈ S∞ and every orthonormal
family (f1, · · · , f2n) where each fi belongs to TϕS∞.

2. One says that the differential form Ω calibrates some immersion Φ0 ∈ N if

(a) The form Ω is closed,

(b) its comass is finite and nonzero and

(c) when we restrict Ω to orthonormal families, it is maximal on the tangent
space TΦ0(

(
H2
)n

), that is,∣∣ΩΦ0(x)(dxΦ0(u1), · · · , dxΦ0(u2n))
∣∣

‖dxΦ0(u1) ∧ · · · ∧ dxΦ0(u2n)‖
= comass(Ω)

for every x ∈
(
H2
)n

and every orthonormal family (u1, · · · , u2n).
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Here is the way we shall exploit a calibrating differential form. The following propo-
sition follows readily from Stokes theorem. Here, we emphasize the fact that we use in
a decisive way the compactness hypothesis for M (see [Sto06]).

Proposition 8 ([BCG95] proposition 4.3 p.748). Assume there exists a differential 2n-
form which calibrates an immersion Φ0 ∈ N . Then

SphereVol(M) = Vol(Φ0).

From now on it remains to find such a calibrating form for the Poisson kernel.

3 A calibrating form for
(
H2
)n

3.1 Definition of the form

We will denote by e the Euler class of the circle,{
e(θ0, θ1, θ2) = 1 if the points are cyclically ordered on S1.
e(θ0, θ1, θ2) = −1 if not.

Then we consider the application C : (Tn)2n+1 → R given by the following formula,

C(θ0, · · · , θ2n) =
1

(2n+ 1)!

∑
σ∈S2n+1

sign(σ)
n∏
i=1

e(θiσ(2i−2), θ
i
σ(2i−1), θ

i
σ(2i)).

For example if n = 1 then C = e, the Euler class and if n = 2, this is the cocycle used
in [BK08]. This map C could be seen as the alternation of the cup product of n Euler
classes. In particular C is alternate, that is,

C(θσ(0), · · · , θσ(2n)) = sign(σ)C(θ0, · · · , θ2n).

Then the following formula defines a differential 2n-form on S∞:

Ωϕ(f1, · · · , f2n) =

∫
(Tn)2n+1

C(θ0, · · · , θ2n)ϕ2(θ0)ϕf(θ1) · · ·ϕf(θ2n)dθ0 · · · dθ2n.

We conclude this paragraph by stating some properties of C that we shall use later on.

Proposition 9. Let G be the group
(
Diff+(S1)

)n
embedded diagonally in Diff+(Tn).

The map C is G-invariant, that is

∀g ∈ G, C(gθ0, · · · , gθ2n) = C(θ0, · · · , θ2n).

Proof: The group Diff+(S1) preserves the cyclic order on S1 then, for γ ∈ Diff+(S1),

e(γθ0, γθ1, γθ2) = e(θ0, θ1, θ2).
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Taking g = (γ1, · · · , γn) ∈ G, one has

C(gθ0, · · · , gθ2n) =
1

(2n+ 1)!

∑
σ∈S2n+1

sign(σ)
n∏
i=1

e(γiθiσ(2i−2), γ
iθiσ(2i−1), γ

iθiσ(2i))

=
1

(2n+ 1)!

∑
σ∈S2n+1

sign(σ)

n∏
i=1

e(θiσ(2i−2), θ
i
σ(2i−1), θ

i
σ(2i))

= C(θ0, · · · , θ2n).

Proposition 10. The map C is closed as a combinatorial cochain, that is

2n+1∑
i=0

(−1)iC(θ0, · · · , θ̂i, · · · , θ2n+1) = 0.

Proof: It is classical that alternating cup products of cocycles leads to a cocycle.

3.2 An invariance relation satisfied by Ω

Let us show now that the form Ω is invariant under the action of the group G =(
Diff+(S1)

)n
. This group contains (PSL2(R))n and extends its action on L2(Tn) by the

change of variables formula,

(gf)(θ) =
√

Jac g−1(θ)f ◦ g−1(θ).

The action being unitary, we let act G on the unit sphere S∞ by restriction and on the
tangent space of this sphere. Then we have, for g ∈ G,

(g∗Ω)ϕ(f1, · · · , f2n) = Ωgϕ(gf1, · · · , gf2n)

=

∫
(Tn)2n+1

C(θ0, · · · , θ2n)(gϕ)2(θ0)
2n∏
i=1

(gϕ)(gfi)(θi)dθi

=

∫
(Tn)2n+1

C(θ0, · · · , θ2n) Jac g−1(θ0)ϕ2(θ0)
2n∏
i=1

Jac g−1(θi)ϕfi(θi)dθi.

We now perform the change of variables formula θ′i = g−1(θi). We get

(g∗Ω)ϕ(f1, · · · , f2n) =

∫
(Tn)2n+1

C(gθ0, · · · , gθ2n)ϕ2(θ0)ϕf(θ1) · · ·ϕf(θ2n)dθ0 · · · dθ2n.

The conclusion now follows from proposition 9.
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3.3 Closure of Ω

In order to use the method of calibration, we have to deal with a closed form. This is
the aim of this paragraph.

Proposition 11. The differential 2n-form Ω is closed.

Proof: To differentiate Ω, it is easier to have an expression on a space of measures
instead of the unit L2-sphere. Let us begin by a quick review on the structure of the
space of measures we will deal with.

Let M be the Banach vector space dual to C0(Tn), the Banach space of continuous
functions on Tn. The spaceM is also the space of Radon measures on Tn. We consider
the affine space

M1 = {µ ∈M|µ(Tn) = 1} .

We think as this affine space as an infinite dimensional manifold shaped on a Banach
space. The tangent space in each point is the vector space of zero-mass measures.

The differential form Ω comes from a form on M1 pulled-back by the smooth map

A : S∞ −→ M1

ϕ 7−→ B 7→
∫
B ϕ

2(θ)dθ.

The image of a function ϕ is the measure with density ϕ2 with respect to the Lebesgue
measure. Let us define a differential 2n-form Ω′ on M1,

Ω′µ(α1, · · · , α2n) =

∫
(Tn)2n+1

C(θ0, · · · , θ2n)dµ(θ0)dα1(θ1) · · · dα2n(θ2n).

Clearly
Ω = 22nA∗Ω′.

Then it is enough to show that Ω′ is closed. But now, Ω′ is a linear map with respect to
µ. Then, we have (see [Lan62] p.84 for the differential formula of a form on a Banach
manifold)

dΩ′µ(α0, · · · , α2n) =
2n∑
i=0

(−1)i∂µΩµ(α0, · · · , α̂i, · · · , α2n) · αi.

By linearity this expression is also

dΩ′µ(α0, · · · , α2n) =
2n∑
i=0

(−1)iΩαi(α0, · · · , α̂i, · · · , α2n).

With skew-symmetry, this is again

dΩ′µ(α0, · · · , α2n) = (2n+ 1)

∫
(Tn)2n+1

C(θ0, · · · , θ2n)dα0(θ0) · · · dα2n(θ2n).
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Each measure has a vanishing total mass. Let us show that the above expression is in
fact

dΩ′µ(α0, · · · , α2n) = −(2n+1)

∫
(Tn)2n+2

∂C(θ0, · · · , θ2n+1)dα0(θ0) · · · dα2n(θ2n)dµ(θ2n+1).

Let us recall the definition of the combinatorial boundary of a cochain,

∂C(θ0, · · · , θ2n+1) =
2n+1∑
i=0

(−1)iC(θ0, · · · , θ̂i, · · · , θ2n+1).

First we have, ∫
(Tn)2n+1

C(θ0, · · · , θ2n)dα0(θ0) · · · dα2n(θ2n)

=

∫
(Tn)2n+2

C(θ0, · · · , θ2n)dα0(θ0) · · · dα2n(θ2n)dµ(θ2n+1)

because µ(Tn) = 1. We recognize the opposite of the last term in the expression of ∂C
(corresponding to the index i = 2n + 1). We now prove that the other terms in the
expression of ∂C vanish. Each of these remaining terms are of the form∫

(Tn)2n+2
C(θ0, · · · , θ̂i, · · · , θ2n+1)dα0(θ0) · · · dα2n(θ2n)dµ(θ2n+1)

with i 6= 2n+ 1. Integrating with respect to the variable θi which is not involved in the
cocycle, make appear a multiplicative term, the total mass of one of a tangent measure,
supposed to be zero.

So finally the closure of C as a combinatorial cocycle (see proposition 10) proves the
result.

3.4 The calibrating inequality

Let us first remark that we only have to establish the inequality at the basepoint ϕ = 1.
Indeed one can show exactly as in paragraph 3.3 that∫

(Tn)2n+1
C(gθ0, · · · , gθ2n)

(
ϕ2(θ0)− 1

)
ϕf(θ1) · · ·ϕf(θ2n)dθ0 · · · dθ2n = 0.

Replacing the functions fi ∈ TϕS∞ by the functions ϕfi ∈ T1S∞, we can make the
assumption ϕ = 1.

Besson, Courtois and Gallot studied the 2-dimensional case in [BCG95] chapter 6.
They used the Euler class to build a differential form

ωϕ(f1, f2) =

∫
(S1)3

e(θ0, θ1, θ2)ϕ2(θ0)ϕf1(θ1)ϕf2(θ2)dθ0dθ1dθ2.

Here is what they proved:
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Proposition 12 ([BCG95] chapter 6). 1. One may use the following alternative ex-
pression for ω,

ωϕ(f1, f2) = 2

∫
S1
F1dF2,

where F1 and F2 are the primitives with vanishing integrals for ϕf1 and ϕf2.

2. The comass of ω equals 1
π .

3. Moreover ω is a calibrating form for the Poisson kernel, that is, at the basepoint
1, ω is maximal over orthonormal families (f1, f2) if

f1(θ) =
√

2 cos θ and f2(θ) =
√

2 sin θ.

Back to the 2n-dimensional situation, we first show that the differential form Ω is
nonzero, evaluating it on T1Φ0(

(
H2
)n

). Remember the family of functions given by

fi : Tn −→ R
θ = (θ1, · · · , θn) 7−→

√
2 cos θi

and
fi+1 : Tn −→ R

θ = (θ1, · · · , θn) 7−→
√

2 sin θi
,

for i = 1, · · · , n, is an orthonormal basis of T1Φ0(
(
H2
)n

).

Lemma 13. We have the relation

Ω1(f1, f2, · · · , f2n) =
2n

πn(2n)!
.

Proof: Let us look for permutations σ ∈ S2n+1 for which the corresponding term

2n sign(σ)

∫
(Tn)2n+1

n∏
i=1

(
e(θiσ(2i−2), θ

i
σ(2i−1), θ

i
σ(2i)) cos θi2i−1 sin θi2i−2

)
dθ0 · · · dθ2n

is nonzero. In order to get such a permutation, the variables θi2i−1 and θi2i which are
involved in the expression

cos θ1
1 sin θ1

2 · · · cos θn2n−1 sin θn2n

have to appear also in the expression

n∏
i=1

e(θiσ(2i−2), θ
i
σ(2i−1), θ

i
σ(2i)).

If not we integrate with respect to one of the variables θi2i−1 or θi2i missing in the term
of the cocycle and we get a multiplicative vanishing term which is the integral of one of
the functions fi. Hence, we need that, for each i,

{θ2i−1, θ2i} ⊂
{
θσ(2i−2), θσ(2i−1), θσ(2i)

}
.
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Let us now compute the number of suitable permutations. The first image σ(0) could
be any of the 2n + 1 elements. Let us say σ(0) falls in the ith Euler class, σ(0) ∈
{2i− 2, 2i− 1, 2i} (e.g σ(0) = 2i − 2, other cases are similar). From the condition
above, it remains only two possibilities for σ(2i− 1) and σ(2i), namely,

σ(2i− 1) = σ(2i− 1) and σ(2i) = σ(2i)

or
σ(2i− 1) = σ(2i) and σ(2i) = σ(2i− 1).

Once we fill the ith Euler class, the adjacent one(s) already have one element imposed
(remember θ2i appears in both the ith Euler class and the (i+ 1)th Euler class). Hence
we have again two possibilities for the two remaining arguments and inductively for each
Euler class.

Finally we find
2n(2n+ 1)

suitable permutations.

We now play with the skew-symmetry relation to show that, for each suitable per-
mutation σ, the corresponding term

2n sign(σ)

∫
(Tn)2n+1

n∏
i=1

(
e(θiσ(2i−2), θ

i
σ(2i−1), θ

i
σ(2i)) cos θi2i−1 sin θi2i−2

)
dθ0 · · · dθ2n

equals 1
πn . From now on, we assume that σ is some suitable permutation characterized

above.
The variable θ0 appears in one or two Euler classes, let us say for example that

σ(0) = 2i

for some i < n (other cases are simpler). Then the variable θ0 appears in both the ith

and the (i+ 1)th Euler class. We compute the term

Tσ := sign(σ)

∫
(Tn)2n+1

n∏
i=1

(
e(θiσ(2i−2), θ

i
σ(2i−1), θ

i
σ(2i)) cos θi2i−1 sin θi2i−2

)
dθ0 · · · dθ2n

by first performing the change of variables

θσ(2i−2) = θ′1, θσ(2i−1) = θ′2, θσ(2i+1) = θ′3, θσ(2i+2) = θ′4 and θk = θ′k,

for k 6= 2i− 2, 2i− 1, 2i+ 1, 2i+ 2. Since the Jacobian of this change of variable is 1, we
do not change the value of Tσ. Remember we took σ such that

{σ(2i− 2), σ(2i− 1)} = {2i− 2, 2i− 1} and {σ(2i+ 1), σ(2i+ 2)} = {2i+ 1, 2i+ 2} .

So we can assume that θ0 appears in the first two Euler classes.

13



Now the disjoint support cycles of the permutation σ are all contained in sets of the
form

{2i− 2, 2i− 1, 2i} .
Hence, when one reorders the variables in each Euler class such that θσ(2i−1) sits in the

(2i − 1)th place and θσ(2i) sits in the (2i)th place, the sign by which we changed Tσ is
precisely sign(σ).

Therefore, because the first variables in each Euler class don’t play any role, each
term Tσ equals Tid. The computation of Tid is easy because the situation appears now
as a product and one can use Lemma 12. Indeed,

Tid = 2n
n∏
i=1

∫
(S1)3

e(θi2i−2, θ
i
2i−1, θ

i
2i) cos θi2i−1 sini2i dθ

i
2i−2dθ

i
2i−1dθ

i
2i

=
n∏
i=1

comass(ω)

=
1

πn
.

We now proceed to the calibrating inequality. We introduce the (2n− 1)-cochain,

D(θ1, · · · , θ2n) =

∫
Tn
C(θ0, · · · , θ2n)dθ0.

The reasoning involves the Fourier coefficient of D. A function f ∈ T1S∞ is written as

f(θ1, · · · , θn) =
∑

k=(k1,··· ,kn)∈I

ak cos(k1θ1 + · · ·+ knθn) + bk sin(k1θ1 + · · ·+ knθn),

where θ = (θ1, · · · , θn) ∈ Tn and k ∈ I, the subset of Zn given by

I = N\ {0} × Zn−1 ∪ {0} × N\ {0} × Zn−2 ∪ · · · ∪ {0, · · · , 0} × N\ {0} .

The convergence of the sum has to be understood for the L2 topology.
We denote by γ : S1 → R a function which can be either

√
2 cos or

√
2 sin. For some

K = (k1, · · · , kn) ∈ I we denote by γK : Tn → R a function which can be either

θ = (θ1, · · · , θn) 7−→
√

2 cos(k1θ1 + · · ·+ knθn)

or
θ = (θ1, · · · , θn) 7−→

√
2 sin(k1θ1 + · · ·+ knθn).

Definition 14 (Fourier transform and Fourier coefficients). Let F be a map from (Tn)2n

to R. The Fourier transform of F is the map

F̂ : I2n −→ R22n

(K1, · · · ,K2n) 7−→
∫

(Tn)2n D(θ1, · · · , θ2nγK1(θ1) · · · γK2n(θ2n)dθ1 · · · dθ2n
.

We call F̂ (K1, · · · ,K2n) a Fourier coefficient. The 22n coordinates of a Fourier coeffi-
cient correspond to the possible choices of functions γ.

14



Remark Fourier coefficients of the cochain D contain values of Ω. In particular

D̂


1 1 0 0 · · · 0
0 0 1 1 · · · 0
...

...
...

...
...

...
0 0 · · · 1 1


contains the value of Ω on the orthonormal tangent of the image of the Poisson kernel.
That is why we investigate the combinatorial properties of D̂.

Here is a characterization of the nonzero Fourier coefficients of D.

Lemma 15. 1. The Fourier coefficient D̂(K1, · · · ,K2n) is nonzero if and only if
there exist some nonzero integers k1, · · · , kn such that

(K1, · · · ,K2n) =


k1 k1 0 0 · · · 0
0 0 k2 k2 · · · 0
...

...
...

...
...

...
0 0 · · · kn kn


up to permutation of lines and rows. Moreover if (K1, · · · ,K2n) is as above, the
nonzero coordinates of D̂(K1, · · · ,K2n) (among the 22n ones) is constructed by
taking

γK2i−1(θ) =
√

2 cos(kiθ1) and γK2i =
√

2 sin(kiθn)

for all i and up to permutations of the functions.

2. A nonzero coordinate of some Fourier coefficient, that is,

2n
∫

(Tn)2n+1
C(θ0, · · · , θ2n)

(
n∏
i=1

cos(kiθi2i−1) sin(kiθi2i)

)
dθ0 · · · dθ2n

equals
2n

(2n)!πn
∏n
i=1 k

i
.

In particular, any nonzero value is smaller than the value of Ω on the tangent of
the image of the Poisson kernel.

Proof: Take some functions γK1 , · · · , γK2n . One may use the addition formulas for
the trigonometric functions γKi . Hence D̂(K1, · · · ,K2n) is a sum of terms of the form∫

(S1)2n
2

n∏
i=1

e(θiσ(2i−2), θ
i
σ(2i−1), θ

i
σ(2i))

2n∏
j=1

n∏
l=1

γ(kljθ
l
j)dθ

l
j

(if for some integer klj = 0, we set γ(kljθ
l
j) = 1). We show that if (K1, · · · ,K2n) is not

as in the statement of the Lemma, every such term vanishes. In order to do that, we
will use several times the arguments below.

15



1. Argument 1 : If there is some variable θlj ∈ S1 which is involved in some function
γ and which is not involved in the term of the cocycle, that is

θlj /∈
n⋃
i=1

{
θiσ(2i−2), θ

i
σ(2i−1), θ

i
σ(2i)

}
,

then we integrate with respect to this variable θlj and we get zero as a multiplicative

term because the integral of θlj 7→ γ(kljθ
l
j) vanishes.

2. Argument 2 : One can also show exactly as in paragraph 3.3 that∫
(S1)3

e(θ0, θ1, θ2)γ(k0θ0)γ(k1θ1)γ(k2θ2)dθ0dθ1dθ2 = 0.

Indeed the Euler class e is combinatorially closed.

3. Argument 3 : An expression of the form∫
(S1)3

e(θ0, θ1, θ2)γ(θ0)dθ0dθ1dθ2

must vanish. Indeed for a fixed θ0,∫
(S1)2

e(θ0, θ1, θ2)dθ1dθ2 = 0.

In each term of the cocycle there is 3n variables involved. Then we cannot have
more than 3n nonzero integers (otherwise we use argument 1 above). We cannot have
also more than 3 nonzero integers in each row. Indeed,

• If there is 4 or more, there is at least one variable involved in the functions and
not in the term of the cocycle. We use argument 1.

• If there is 3, there is again 2 possibilities. Either the variables involved in the
functions and in the cocycle are not the same and we use argument 1; either they
are the same and after we integrate with respect to this 3 variable, we use argument
2.

Moreover we cannot have more than 2 nonzero integers in each line. Indeed there
is at most one repetition of the variables in the different Euler classes. In fact there is
exactly two nonzero integers in each line. If there is only one, this means that there is
only one of three variables in some Euler class matching with a variable in the functions.
We integrate with respect to this three variables and we use argument 3.

Hence there is exactly 2n nonzero integers in the 2n2 coordinates of a nonzero index
(K1, · · · ,K2n) ∈ I2n and exactly two nonzero integers in each line. So there is exactly
one nonzero integer in each row.
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So far we can assume that

(K1, · · · ,K2n) =


k1 k2 0 0 · · · 0
0 0 k3 k4 · · · 0
...

...
...

...
...

...
0 0 · · · k2n−1 k2n


for 2n nonzero integers k1, k2, · · · , k2n. Indeed, up to sign, the values of D̂(K1, · · · ,K2n)
are left unchanged when we permute the Ki’s. One can also reorder the lines by per-
forming some change of variables of the form

θ
′σ(l)
j = θlj

which only changes the sign. From now on the situation appears completely as a product.
One can check that the permutations σ ∈ S2n+1 giving a nonzero contribution are
exactly the ones we characterized in Lemma 13. Each term gives the same value. A
generic coordinate of D̂(K1, · · · ,K2n) can be written as

2n

(2n)!

n∏
i=1

∫
(S1)3

e(θi2i−2, θ
i
2i−1, θ

i
2i)γ(k2i−1θi2i−1)γ(k2iθi2i)dθ

i
2i−2dθ

i
2i−1dθ

i
2i.

We can now conclude with the assertion 1 of Lemma 12. Indeed we must choose the
integers k1, k2, · · · , k2n and the functions γK1 , γK2 , · · · , γK2n such that, for all index i,
γK2i and the primitive of γK2i−1 are not L2-orthogonal.

We can also perform the exact computation of the nonzero values thanks to the same
assertion 1 of Lemma 12. Indeed for each index i,

2

∫
(S1)3

e(θi2i−2, θ
i
2i−1, θ

i
2i) cos(kiθi2i−1) sin(kiθi2i)dθ

i
2i−2dθ

i
2i−1dθ

i
2i

= 4

∫
S1

1

ki
sin2(kiθi)dθi =

1

kiπ
.

We finally deduce the calibrating inequality. Take 2n functions f1, · · · , f2n with
integrals zero, the family (f1, · · · , f2n) being orthonormal. For each function fi, we
write

fi(θ) =
∑

K=(k1,··· ,kn)∈I

aK,i cos(k1θ1 + · · ·+ knθn) + bK,i sin(k1θ1 + · · ·+ knθn).

and we denote by cK,i some Fourier coefficient of fi which can be either aK,i or bK,i.
Beside, let us set the following convention in order to design the coordinates of some

17



Fourier coefficient. We take C = (cK1,1, · · · , cK2n,2n) ∈
∏2n
i=1 {aKi,i, bKi,i} and denote by

D̂(K1, · · · ,K2n)C the coordinate of D̂(K1, · · · ,K2n) corresponding to{
γKi(θ) = cos(k1

i θ
1 + · · ·+ kni θ

n) if cKi,i = aKi,i.
γKi(θ) = sin(k1

i θ
1 + · · ·+ kni θ

n) if cKi,i = bKi,i.

Hence

Ω1(f1, · · · , f2n) =
∑

K1,··· ,K2n

C∈
∏2n
i=1{aKi,i,bKi,i}

D̂(K1, · · · ,K2n)CcK1,1 · · · cK2n,2n.

We already isolated the vanishing Fourier coefficients. Let B = (e1, · · · , en) be a basis
of Rn. For ρ ∈ Sn, we denote by Q(ρ) the n× n matrix in B of the linear map sending
ei to eρ(i). We have

Ω1(f1, · · · , f2n) =
∑

D̂

Q(ρ) ·


k1 k1 0 0 · · · 0
0 0 k2 k2 · · · 0
...

...
...

...
...

...
0 0 · · · kn kn




n∏
i=1

ckρ(i),2i−1c
′
kρ(i),2i

.

The sum is taken over all possible choices of nonzero integers k1, · · · , kn, all permutations
ρ ∈ Sn and over all possibilities of ckρ(i),2i−1 and c′

kρ(i),2i
such that, for all i,

ckρ(i),2i−1 = akρ(i),2i−1 and c′
kρ(i),2i

= bkρ(i),2i

or
ckρ(i),2i−1 = bkρ(i),2i−1 and c′

kρ(i),2i
= akρ(i),2i.

We now have

|Ωϕ(f1, · · · , f2n)| 6
∑ 2n

(2n)!πn
∏n
i=1 k

i

n∏
i=1

∣∣∣ckρ(i),2i−1c
′
kρ(i),2i

∣∣∣
6

∑ 2n

(2n)!πn

n∏
i=1

∣∣∣ckρ(i),2i−1c
′
kρ(i),2i

∣∣∣ .
It is a standard fact that, using repetitively the Cauchy-Schwartz inequality, one gets

∑
α∈A

N∏
β=1

xα,β 6
N∏
β=1

√∑
α∈A

x2
α,β,

for some countable set A, some integer N and some non-negative numbers xα,β. Here
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we obtain

|Ω1(f1, · · · , f2n)| 6
2n

(2n)!πn

n∏
i=1

√∑∣∣∣ckρ(i),2i−1

∣∣∣ n∏
i=1

√∑∣∣∣c′
kρ(i),2i

∣∣∣
6

2n

(2n)!πn

2n∏
i=1

‖fi‖L2

=
2n

(2n)!πn
.

This inequality is an equality when (f1, · · · , f2n) generates the tangent to the image of
the Poisson kernel. The proof of the main theorem is then complete.

4 Applications

We finally look for some consequences, suggested in the last chapter of [BCG95].
It is possible to extend the main result to the case where g lives on another differ-

entiable manifold related to M by a map of non-zero degree. The result we obtain is an
optimal ”degree theorem” as in the article [CF03a] who misses the case we investigate.
There is also a similar result in [LS09] but with a nonoptimal constant and with an
additional hypothesis on the Ricci curvature of g.

We denote again M = Γ\
(
H2
)n

a compact quotient of
(
H2
)n

and g0 the sum of
hyperbolic metrics in the different factors H2.

Corollary 4. Let Y be a differentiable manifold of dimension 2n endowed with a Rie-
mannian metric g and let f be a continuous map

f : (Y, g) −→ (M, g0)

Then
h(g)2n Vol(Y, g) > |deg f |h(g0)2n Vol(M, g0)

Proof: Observe that the inequality is trivial if deg(f) = 0. So let us assume that
deg(f) is non-zero. First, one can regularize the map f in a homotopic map, still
denoted f , which is C1. We call f̃ the map induced by f from Ỹ to M̃ . Let us introduce
the invariant appropriated to this new situation

SphereVol(f) = inf Vol((U,Φ∗(can)))

where Φ are Lipschitz continuous equivariant immersions from Ỹ to L2(Tn). As before,
one example is given by the product of Poisson kernels,

Φ0(y, θ) =

n∏
i=1

√
p0(f̃(y)i, θi),
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where the f̃(y)i’s are the coordinates in the factors H2 and the θi’s are the coordinate
in Tn. We also consider

Φc(y, θ) =

(∫
Ỹ
e−cd(y,z)Φ2

0(z, θ)dvg(z)∫
Tn e

−cd(y,z)Φ2
0(z, θ)dθ

)1/2

.

where d is the g-distance in Ỹ . The two arguments above (page 5 for the first and
section 3 for the second) give in this context

1. SphereVol 6
(
h(g)2

8n

)n
Vol(Y, g) using the computation of Vol(Φc)

2. The image of Φ0 is still calibrated because f is surjective and then SphereVol =
Vol(Φ0). Moreover

Vol(Φ0) = |deg f |
(
h(g0)2

8n

)n
Vol(X, g0).

We also obtain an estimate for the minimal volume. Let X be a compact manifold.
The minimal volume is defined as

MinVol = inf {Vol(g), |K(g)| 6 1}

(see [Gro82]).

Corollary 3. Let M = Γ\
(
H2
)n

be a compact quotient of
(
H2
)n

. Then

MinVol(M) >

( √
n

2n− 1

)2n

Vol(g0).

In particular, we reprove in a quantitative way a general theorem of [LS06] stating
that MinVol is nonzero. However the inequality is probably not sharp.

Proof: We still follow chapter 9 of [BCG95]. Take a metric g on M with |K(g)| 6 1.
We deduce an equality on the Ricci curvature

Ric(g) > −(2n− 1)g.

We then apply Bishop’s inequality ([GHL04] p.144) comparing volumes of balls for g
and volumes of balls in the hyperbolic 2n-space H2n. Taking the logarithm and making
the radius go to infinity, we have

h(g) 6 2n− 1.

We conclude introducing this inequality in

Vol(g) >

( √
n

h(g)

)2n

Vol(g0).
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Here is a last consequence in dimension 4. P. Suarez-Serrato in [SS09] classified the
4-dimensional Thurston geometries admitting a metric of minimal normalized volume
entropy. The only missing case were the case of quotients of H2 ×H2. In dimension 4,
there exist 19 geometries admitting a compact quotient (see the list and references in
[SS09] p. 366). P. Suarez-Serrato was able to decide among the 18 geometries (all but
H2×H2) which ones admit a metric of volume 1 with minimal volume entropy (theorem
A). Hence we obtain

Corollary 16. The 4-dimensional Thurston geometries admitting a metric with mini-
mal normalized volume entropy are only those of ”hyperbolic type”

H4
R,H2

C and H2
R ×H2

R.

References

[BCG91] G. Besson, G. Courtois, and S. Gallot. Volume et entropie minimale des
espaces localement symétriques. Invent. Math., 103(2):417–445, 1991.

[BCG95] G. Besson, G. Courtois, and S. Gallot. Entropies et rigidités des espaces
localement symétriques de courbure strictement négative. Geom. Funct. Anal.,
5(5):731–799, 1995.

[BCG07] Gérard Besson, Gilles Courtois, and Sylvestre Gallot. Inégalités de Milnor-
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